802.16e표준을 기반으로 한 와이브로 기술
본 자료는 6페이지 의 미리보기를 제공합니다. 이미지를 클릭하여 주세요.
닫기
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
해당 자료는 6페이지 까지만 미리보기를 제공합니다.
6페이지 이후부터 다운로드 후 확인할 수 있습니다.

소개글

802.16e표준을 기반으로 한 와이브로 기술에 대한 보고서 자료입니다.

목차

1. 서론

2. OFDM(Orthogonal Frequency Division Multiplexing) 전송 기술
1) 다중경로 페이딩
2) 직교 주파수 분할 다중화
3) 기저대역 고속 변복조
4) Cyclic Prefixv 주기적 전치 부호
5) 다중 액세스 방식
6) OFDM의 고려 사항

3. 와이브로 다중접속 표준
1) 표준화 동향
2) 물리 계층 표준 내용
3) 와이브로 다중접속 요소 기술
4) 셀 탐색과 레인징
5) 동기 기술
6) 채널 추정 기술
7) 전력 제어
8) 핸드오프
9) 간섭제거 기술

4. 마무리

본문내용

리앰블과 파일럿을 사용하여 채널을 추정한다. 프리앰블을 사용할 경우 앞에서 언급한 방식 중 하나를 선택하여 사용할 수 있는데, 구현의 용이한 LS 방식이 적합할 것으로 보인다. 파일럿을 이용하여 채널을 추정할 경우 LS 방식과 보간 기술을 혼용하여 채널을 추정한다.
보간 기술로 선형 보간, 이차 보간, 큐빅 스플라인 보간, 저역통과 필터를 이용한 보간, DFT/IDFT를 이용한 보간 등이 있다. 일반적으로 채널 추정을 시간이나 주파수 영역 중 어느 한 곳에서만 수행하는 1차원 방식이 사용되지만, 성능을 높이기 위해 시간과 주파수 영역 모두에서 채널 추정을 수행하는 2차원 방식이 사용되기도 한다. 채널 추정 방식이나 형태는 시스템의 요구 조건과 파일럿의 배치 등에 따라 달라질 수 있다.
와이브로에서 하향 링크 다이버시티 심볼과 상/하향 링크 AMC 심볼은 파일럿, 데이터 및 널 부반송파로 구성된다. 파일럿과 널 부반송파들를 배치한 후 데이터 부반송파를 배치하도록 할당 순서가 정해져 있다. 파일럿 부반송파의 할당은 연속되는 9개의 부반송파로 구성되는 빈 내에서 특정 부반송파 한 개를 할당함으로써 이뤄진다. 빈 내에서 파일럿 부반송파의 위치는 심볼의 인덱스에 따라 달라진다.
정확한 파일럿 부반송파의 위치는 9k+3m+1에 의해 결정된다. 여기서, k는 0~95의 값을 가지며 m=[symbol index] mod 3에 의해 정해진다. 이것과는 달리 상향 링크 다이버시티 심볼은 33 주파수-시간 블록인 타일 단위로 처리되며 이 타일의 중앙에 하나의 파일럿이 삽입된다. 하향 링크 다이버시티 심볼이나 AMC 심볼의 경우, 각 이동국은 OFDMA 심볼 내에 삽입된 모든 파일럿 심볼을 사용하여 채널을 추정할 수 있다. 상향 링크 다이버시티 심볼이나 AMC 심볼의 경우, 기지국은 서로 다른 채널 환경을 통과한 여러 이동국의 신호를 수신하므로 각 사용자마다 채널을 추정해줘야 한다.
7) 전력 제어
전력 제어는 자기 기지국 용량의 최대화, 배터리 수명 연장, 인접 기지국 용량 최대화, 균일한 서비스 품질 유지 등을 위해 사용된다. 전력 제어로는 개방루프 전력 제어, 폐루프 전력 제어, 순방향 전력 제어, 외부루프 전력 제어, 순방향/역방향 과부하 제어 등이 있다. 와이브로는 하향 링크에서 순방향 전력 제어를, 상향 링크에서 개방루프 전력 제어를 수행한다.
순방향 전력 제어는 기지국으로부터 멀리 있거나 전파 상태가 좋지 않은 이동국에게는 더 큰 출력으로 송신하고 반대의 경우에는 작은 출력으로 송신하는 방식이다. 개방루프 전력 제어는 기지국으로부터 가까이 있는 이동국은 출력을 작게, 멀리 있는 이동국은 출력을 크게 송신하는 방식으로써, 이동국은 단지 기지국으로부터의 신호세기에 따라 출력을 결정하게 된다. 즉, 기지국으로부터의 수신 전력이 크면 이동국 출력을 작게, 수신 전력이 작으면 이동국 출력을 크게 함으로써 근사적으로 기지국에 도달하는 이동국 출력을 최소화할 수 있다.
정리하자면 다중접속 방식으로 OFDMA를 사용하는 와이브로는 하향 링크 전력 제어를 위해 부채널 별로 전 력할당을 조정할 수 있고, 상향링크 전력 제어를 위해 하향 링크 수신 전력에 따라 상향 링크의 송신 전력을 조정할 수 있다.
8) 핸드오프
서비스 중 기지국과 기지국 사이를 이동하는 이동국의 서비스가 원활히 유지되도록 하는 과정을 핸드오프라고 한다. 핸드오프는 소프터 핸드오프, 소프트 핸드오프, 하드 핸드오프로 구분된다. 소프트 핸드오프는 서비스 중 이동국이 기지국과 기지국간을 이동할 때 양쪽 기지국의 신호를 동시에 잡는 중간 과정을 거쳐 서비스를 연결해주는 방식으로 ‘make before break’라고 한다.
소프트 핸드오프는 기지국의 섹터간에 이루어지는 핸드오프를 말하며, 한 섹터를 버리고 새로운 섹터를 취하는 스왑 과정에 의해 이루어진다. 하드 핸드오프는 이동국이 인접 기지국간을 이동할 때 순간적으로 서비스 절단을 발생시키지만 사용자가 서비스의 지장을 느끼지 못하는 순간에 다음 기지국으로 서비스를 재연결시켜 준다. 하드 핸드오프를 make after break라고도 한다. 교환기간이나 주파수간에 주로 하드 핸드오프가 사용된다. 와이브로는 하드 핸드오프 방식을 사용할 것으로 보인다.
9) 간섭제거 기술
이동통신 시스템에서 주로 발생하는 간섭으로 셀간 간섭과 셀내 간섭이 있다. 셀간 간섭은 동일한 중심 주파수를 사용하는 셀들간에 발생하는 간섭을 말하다. 셀내 간섭은 셀내에 존재하는 이동국간에 발생하는 간섭을 말한다. 와이브로는 주파수 재사용률이 1이므로 모든 기지국은 동일한 중심 주파수를 사용하며 이로 인해 셀간 간섭이 발생할 수 있다.
이 간섭을 줄이기 위해 각 기지국마다 부채널의 할당을 달리하는 방식과 일부의 부채널만을 사용하고 나머지 부채널은 비워두는 PUSC(Partial Usage of Subchannels) 채널 등이 사용된다. 그러나 인접한 기지국들이 모든 부채널을 사용한다면 셀간 간섭은 심각한 수준에 이르게 되므로 이를 해결할 방안에 대한 연구가 필요하다. 셀내 사용자간 간섭은 OFDMA 방식이기 때문에 존재하지 않는다고 해석한다.
4. 마무리
기본적인 와이브로 1단계 표준에 대해 살펴보았으며 와이브로 다중접속을 위해 사용되는 OFDM 기술과 MIMO 기술을 개념적으로 설명했다. 또한, 와이브로 표준의 구현시 실제로 고려해야 하는 필수적인 기술들을 정리했다. 현재 국내 정보통신 표준화 단체인 TTA에는 휴대인터넷을 위한 2단계 표준화 작업을 진행하고 있으며 이것이 완성될 경우 더욱 빠른 속도의 인터넷 서비스를 누릴 수 있을 것이다.
휴대인터넷은 지금까지 경험한 인터넷 서비스 환경과는 차원이 다른 ‘이동 중’이라는 새로운 차원의 서비스 사용 환경을 제공하게 될 것이며, 그 결과 지하철에서 스포츠신문이나 책을 읽는 사람, 하릴 없이 창밖을 바라보는 사람, 차창에 머리를 기대고 자는 사람들의 모습은 점차 사라지고 저마다의 단말기를 손에 들고 열심히 정보의 바다를 항해하는 사람들의 모습을 쉽게 찾아볼 수 있을 것이다.
* 참고문헌 : ZDNet Korea의 제휴매체인 마이크로소프트웨어에 게재된 내용참조.

키워드

와이브로,   OFDM,   wibro,   802,   802.16e,   휴대,   무선,   WiBro
  • 가격3,000
  • 페이지수19페이지
  • 등록일2008.03.28
  • 저작시기2007.10
  • 파일형식한글(hwp)
  • 자료번호#458318
본 자료는 최근 2주간 다운받은 회원이 없습니다.
  • 편집
  • 내용
  • 가격
청소해
다운로드 장바구니