목차
2022년 기출문제
방송대 다변량교재
연습문제 1장 (p.38) 4번
연습문제 2장 (p.75) 1번
연습문제 3장 (p.122) 2번
방송대 다변량교재
연습문제 1장 (p.38) 4번
연습문제 2장 (p.75) 1번
연습문제 3장 (p.122) 2번
본문내용
_csv(\"c:/data/favoritesujects.csv\")
del fasu[\"SUBJECT\"]
fasu.head(3)
fasu.describe()
pip install factor-analyzer
from factor_analyzer import FactorAnalyzer
fa = FactorAnalyzer(rotation=None)
fa.fit(fasu)
fa.loadings_
fa.get_communalities()
fa.get_uniquenesses()
fa.get_factor_variance()
ev, v = fa.get_eigenvalues()
ev
plt.scatter(range(1, fasu.shape[1]+1), ev)
plt.plot(range(1, fasu.shape[1]+1), ev)
plt.title(\'Scree Plot\')
plt.xlabel(\'Factors\')
plt.ylabel(\'Eigenvalues\')
plt.grid()
plt.show()
import seaborn as sns
sns.heatmap(fa.loadings_, cmap=\"Blues\", annot=True, fmt=\'.2f\')
plt.show()
fa_varimax = FactorAnalyzer(n_factors=3, rotation=\'varimax\', method=\'principal\')
fa_varimax.fit(fasu)
fa_varimax.loadings_
fa_varimax.get_communalities()
fa_varimax.get_uniquenesses()
fa_varimax.get_factor_variance()
fa_promax = FactorAnalyzer(n_factors=3, rotation=\'promax\', method=\'principal\')
fa_promax.fit(fasu)
fa_promax.loadings_
fa_promax.get_communalities()
fa_promax.get_uniquenesses()
fa_promax.get_factor_variance()
결과값
fasu.describe()
Out[35]:
BIO GEO CHEM ALG CALC STAT
count 300.000000 300.000000 300.000000 300.000000 300.000000 300.000000
mean 2.353333 2.170000 2.236667 3.050000 3.063333 2.936667
std 1.227536 1.229963 1.272551 1.174207 1.127042 1.258811
min 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
25% 1.000000 1.000000 1.000000 2.000000 2.000000 2.000000
50% 2.000000 2.000000 2.000000 3.000000 3.000000 3.000000
75% 3.000000 3.000000 3.000000 4.000000 4.000000 4.000000
max 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000
fa.loadings_
Out[40]:
array([[ 0.74882246, -0.42933797, -0.05488136],
[ 0.70544419, -0.37010412, 0.0742006 ],
[ 0.71514214, -0.48614684, -0.05121496],
[ 0.50346786, 0.58989815, -0.02414972],
[ 0.68048177, 0.72014763, -0.11910879],
[ 0.46358192, 0.30891564, 0.255808 ]])
fa.get_communalities()
Out[41]:
array([0.74807813, 0.6401343 , 0.75039 , 0.60204292, 0.99585496,
0.3757748 ])
fa.get_uniquenesses()
Out[42]:
array([0.25192187, 0.3598657 , 0.24961 , 0.39795708, 0.00414504,
0.6242252 ])
fa.get_factor_variance()
Out[43]:
(array([2.50125839, 1.51966821, 0.09134851]),
array([0.4168764 , 0.25327803, 0.01522475]),
array([0.4168764 , 0.67015443, 0.68537918]))
ev
Out[45]:
array([2.78672826, 1.77778185, 0.63046377, 0.33664744, 0.2621086 ,
0.20627009])
fa_varimax.loadings_
Out[50]:
array([[0.89950632, 0.08902106, 0.06390784],
[0.86353099, 0.08339965, 0.12452531],
[0.90728477, 0.02896738, 0.03270613],
[0.04162009, 0.94295906, 0.11660795],
[0.12169482, 0.89234356, 0.26432819],
[0.12433885, 0.29319907, 0.9453823 ]])
fa_varimax.get_communalities()
Out[51]:
array([0.82112059, 0.76814782, 0.82507445, 0.90450144, 0.88095605,
0.99517353])
fa_varimax.get_uniquenesses()
Out[52]:
array([0.17887941, 0.23185218, 0.17492555, 0.09549856, 0.11904395,
0.00482647])
fa_varimax.get_factor_variance()
Out[53]:
(array([2.40996505, 1.78713387, 0.99787495]),
array([0.40166084, 0.29785565, 0.16631249]),
array([0.40166084, 0.69951649, 0.86582898]))
del fasu[\"SUBJECT\"]
fasu.head(3)
fasu.describe()
pip install factor-analyzer
from factor_analyzer import FactorAnalyzer
fa = FactorAnalyzer(rotation=None)
fa.fit(fasu)
fa.loadings_
fa.get_communalities()
fa.get_uniquenesses()
fa.get_factor_variance()
ev, v = fa.get_eigenvalues()
ev
plt.scatter(range(1, fasu.shape[1]+1), ev)
plt.plot(range(1, fasu.shape[1]+1), ev)
plt.title(\'Scree Plot\')
plt.xlabel(\'Factors\')
plt.ylabel(\'Eigenvalues\')
plt.grid()
plt.show()
import seaborn as sns
sns.heatmap(fa.loadings_, cmap=\"Blues\", annot=True, fmt=\'.2f\')
plt.show()
fa_varimax = FactorAnalyzer(n_factors=3, rotation=\'varimax\', method=\'principal\')
fa_varimax.fit(fasu)
fa_varimax.loadings_
fa_varimax.get_communalities()
fa_varimax.get_uniquenesses()
fa_varimax.get_factor_variance()
fa_promax = FactorAnalyzer(n_factors=3, rotation=\'promax\', method=\'principal\')
fa_promax.fit(fasu)
fa_promax.loadings_
fa_promax.get_communalities()
fa_promax.get_uniquenesses()
fa_promax.get_factor_variance()
결과값
fasu.describe()
Out[35]:
BIO GEO CHEM ALG CALC STAT
count 300.000000 300.000000 300.000000 300.000000 300.000000 300.000000
mean 2.353333 2.170000 2.236667 3.050000 3.063333 2.936667
std 1.227536 1.229963 1.272551 1.174207 1.127042 1.258811
min 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
25% 1.000000 1.000000 1.000000 2.000000 2.000000 2.000000
50% 2.000000 2.000000 2.000000 3.000000 3.000000 3.000000
75% 3.000000 3.000000 3.000000 4.000000 4.000000 4.000000
max 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000
fa.loadings_
Out[40]:
array([[ 0.74882246, -0.42933797, -0.05488136],
[ 0.70544419, -0.37010412, 0.0742006 ],
[ 0.71514214, -0.48614684, -0.05121496],
[ 0.50346786, 0.58989815, -0.02414972],
[ 0.68048177, 0.72014763, -0.11910879],
[ 0.46358192, 0.30891564, 0.255808 ]])
fa.get_communalities()
Out[41]:
array([0.74807813, 0.6401343 , 0.75039 , 0.60204292, 0.99585496,
0.3757748 ])
fa.get_uniquenesses()
Out[42]:
array([0.25192187, 0.3598657 , 0.24961 , 0.39795708, 0.00414504,
0.6242252 ])
fa.get_factor_variance()
Out[43]:
(array([2.50125839, 1.51966821, 0.09134851]),
array([0.4168764 , 0.25327803, 0.01522475]),
array([0.4168764 , 0.67015443, 0.68537918]))
ev
Out[45]:
array([2.78672826, 1.77778185, 0.63046377, 0.33664744, 0.2621086 ,
0.20627009])
fa_varimax.loadings_
Out[50]:
array([[0.89950632, 0.08902106, 0.06390784],
[0.86353099, 0.08339965, 0.12452531],
[0.90728477, 0.02896738, 0.03270613],
[0.04162009, 0.94295906, 0.11660795],
[0.12169482, 0.89234356, 0.26432819],
[0.12433885, 0.29319907, 0.9453823 ]])
fa_varimax.get_communalities()
Out[51]:
array([0.82112059, 0.76814782, 0.82507445, 0.90450144, 0.88095605,
0.99517353])
fa_varimax.get_uniquenesses()
Out[52]:
array([0.17887941, 0.23185218, 0.17492555, 0.09549856, 0.11904395,
0.00482647])
fa_varimax.get_factor_variance()
Out[53]:
(array([2.40996505, 1.78713387, 0.99787495]),
array([0.40166084, 0.29785565, 0.16631249]),
array([0.40166084, 0.69951649, 0.86582898]))
추천자료
[방송통신대학교 2017학년도 1학기 중간과제물] 정신분석적 상담이론, 인지상담이론, 행동수...
[방송통신대학교 2019학년도 1학기 중간과제물] 세계의정치와경제(C형)(교재 6장의 내용을 참...
2022학년도 1학기 한국지리여행 중간과제물
2022학년도 1학기 관광법규 중간과제물
(2022학년도 1학기 기말시험, 평생교육론) 마을과 학교가 긴밀하게 관계를 맺고 마을교육공동...
(2022년 방송통신대 다변량분석 출석과제물)연습문제 1장 p38 4번 연습문제 2장 p75 1번 연습...
(2022학년도 2학기 중간과제물, 성,사랑,사회, 공통) <한국 남성을 분석한다>의 독후감
(2022학년도 2학기 기말시험, 국문학연습, 과제물)1. 양귀자의 소설 『나는 소망한다 내게 금...
(2022학년도 2학기 기말시험, 정책분석론, 과제물) AHP 분석의 특징과 일반절차를 설명하고, ...
소개글