베이즈데이터분석 2024년 2학기 방송통신대 기말과제물)밀도함수를 고려하자. 중요도 추출 방법을 이용하여 밀도함수 의 기댓값을 구하려고 한다. 마르코프체인 스탠 R코드 시계열 자기상관계수 그림 사후표본 사후평균 사후표준편차 95%신용구간 등
본 자료는 미리보기를 지원하지 않습니다.
닫기
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
해당 자료는 5페이지 까지만 미리보기를 제공합니다.
5페이지 이후부터 다운로드 후 확인할 수 있습니다.

소개글

베이즈데이터분석 2024년 2학기 방송통신대 기말과제물)밀도함수를 고려하자. 중요도 추출 방법을 이용하여 밀도함수 의 기댓값을 구하려고 한다. 마르코프체인 스탠 R코드 시계열 자기상관계수 그림 사후표본 사후평균 사후표준편차 95%신용구간 등에 대한 보고서 자료입니다.

본문내용

베이지안 추론의 핵심은 관측값이 주어졌을 때 모수 θ의 사후분포를 구하는 것이다. 그러나 모형이 복잡하거나 모수의 수가 많으면 θ를 수리적으로 구할 수 없다. 따라서 사후분포의 사후평균, 사후분산, 특정 사건에 대한 사후확률 등을 근사적으로 계산할 필요가 있다. 이때 사후분포의 특성을 근사적으로 구하기 위해 마르코프 체인 몬테칼로(Markov Chain Monte Carlo, MCMC) 기법이 많이 사용된다. MCMC 기법은 마르코프체인을 이용하여 사후분포로부터 표본을 생성하고 이 사후표본을 사용하여 사후추론을 수행하는 방법이다. 깁스 추출법, 메트로폴리스-헤이스팅스 알고리듬, 해밀턴 몬테 카를로 등이 대표적인 MCMC 기법이다.

단순한 모델의 경우 R의 기본적인 함수(lm, glm 등)를 사용하여 매개변수를 추정할 수 있고, 복잡한 모델의 경우에도 기존 R 패키지를 사용하면 문제를 해결할 수 있는 경우도 있다. 그러나 패키지와 함수별로 사용 방법이 달라서 이를 충분히 인지해야 하고, 패지지와 함수 중에서 적절한 모델을 찾는 노력도 중요하다. 특히 적절한 모델 지원이 되지 않는 경우에는 분석 자체를 진행할 수 없게 된다. 이처럼 R 패키지가 모델 확장 성이 낮다는 단점에 대응하기 위해 등장한 것이 Stan, WinBUGS, JAGS 등의 확률적 프로그래밍 언어라고 할 수 있다.

Stan은 앤드류 겔만, 밥 카펜터, 대니얼 리 등이 2012년부터 깃허브에서 개발하고 있는 확률적 프로그래밍언어이다. WinBUGS나 JAGS처럼 사후분포에서 표본을 추출한다. R인터페이스인 rstan과 함께 python과 matlab 인터페이스도 공개되어 있다. Stan은 추정 계산 알고리즘으로 해밀토니안 몬테칼로(HMC)의 한 버전인 NUTS(No-U-Turn Sampler)를 사용한다. NUTS는 매개변수의 수가 많아도 효과적으로 표본을 추출한다. Stan은 WinBUGS나 JAGS와 달리 복잡한 모델에서도 상당히 정상적으로 표본을 추출할 수 있다. Stan에서는 추정계산에 변분 베이즈법의 한 버전인 자동 미분 변분 추정(ADVI)을 사용할 수도 있다.
  • 가격15,000
  • 페이지수15페이지
  • 등록일2024.11.09
  • 저작시기2024.11
  • 파일형식압축파일(zip)
  • 자료번호#1557634
본 자료는 최근 2주간 다운받은 회원이 없습니다.
청소해
다운로드 장바구니