목차
Ⅰ. 물리실험 사례1(위치에너지와 운동에너지)
1. 에너지실험1 : 화학 E → 열 E 의 전환
1) 교구
2) 실험
3) 설명
2. 에너지실험2 : 잠재(위치)에너지와 운동에너지
1) 교구
2) 실험
3) 설명
3. 운동과 힘
1) 운동과 힘 실험 1 : 중력
2) 운동과 힘 실험 2
3) 운동과 힘 실험 3
4) 운동과 힘 실험 4
5) 운동과 힘 실험 5
Ⅱ. 물리실험 사례2(부력)
1. 주제
2. 배경
3. 과정
1) 순서 1: 컴퓨터 설치
2) 순서 2 : 센서의 조정과 장치의 Set up
3) 순서 3 : 데이터 기록
4. 분석
Ⅲ. 물리실험 사례3(중력가속도)
1. 목적
2. 원리
3. 실험 방법
4. 실험 결과
1) 진자의 길이 : 50cm 일 때
2) 진자의 길이 : 100cm 일 때
5. 결론 및 토의
Ⅳ. 물리실험 사례4(자기유도)
1. 목적
2. 이론
3. 장치
4. 방법
Ⅴ. 물리실험 사례5(나선운동)
1. 실험 목적
2. 실험 전 예비지식
3. 실험 방법
4. 논의
Ⅵ. 물리실험 사례6(이중슬릿)
1. 실험목적
2. 이론
3. 실험방법
Ⅶ. 물리실험 사례7(분산)
1. 실험 목적
2. 원리
3. 실험 방법
참고문헌
1. 에너지실험1 : 화학 E → 열 E 의 전환
1) 교구
2) 실험
3) 설명
2. 에너지실험2 : 잠재(위치)에너지와 운동에너지
1) 교구
2) 실험
3) 설명
3. 운동과 힘
1) 운동과 힘 실험 1 : 중력
2) 운동과 힘 실험 2
3) 운동과 힘 실험 3
4) 운동과 힘 실험 4
5) 운동과 힘 실험 5
Ⅱ. 물리실험 사례2(부력)
1. 주제
2. 배경
3. 과정
1) 순서 1: 컴퓨터 설치
2) 순서 2 : 센서의 조정과 장치의 Set up
3) 순서 3 : 데이터 기록
4. 분석
Ⅲ. 물리실험 사례3(중력가속도)
1. 목적
2. 원리
3. 실험 방법
4. 실험 결과
1) 진자의 길이 : 50cm 일 때
2) 진자의 길이 : 100cm 일 때
5. 결론 및 토의
Ⅳ. 물리실험 사례4(자기유도)
1. 목적
2. 이론
3. 장치
4. 방법
Ⅴ. 물리실험 사례5(나선운동)
1. 실험 목적
2. 실험 전 예비지식
3. 실험 방법
4. 논의
Ⅵ. 물리실험 사례6(이중슬릿)
1. 실험목적
2. 이론
3. 실험방법
Ⅶ. 물리실험 사례7(분산)
1. 실험 목적
2. 원리
3. 실험 방법
참고문헌
본문내용
p velocity)가 매우 다르다는 것을 발견한다. 특히 group velocity는 cutoff frequency에서 0으로 가고, phase velocity는 0으로 가지 않는다. 그러므로 우리는 sharp pulse가 그러한 line에 의해서 변화될 것이라고 기대할 수 있다. 우리는 그러한 line을 dispersive로서 묘사한다.
우리는 손실이 없는 이상적인 line을 시험할 것이다. Appendix B-7에서 손실이 포함된 실제 line의 성질을 시험할 것이다. 우리는 그 line이 무한하거나, 단지 line의 한 전형적인 section만을 고려하는 것이 필요하도록 양쪽 끝에 연결된다고 가정하면 line의 한 전형적 section에 대하여는 실험 B-6의 (2)로부터 다음 식을 얻는다.
(1)
만일 우리가 사인파형태의 변위를 가지고 끝을 구동시킨다면,
(2)
우리는 번째 mass의 변위가 다음과 같이 주어지도록 line을 따라 진행되는 disturbance를 기대할 수 있다.
(3)
만일 우리가 (3) 을 (1) 에 대입하면, 우리는 다음을 얻는다.
(4)
우리는 삼각함수 공식에 의하여 (4) 의 오른쪽을 간단히 할 수 있다.
(5)
(6)
(6) 의 양쪽 변에서 계수를 같게 하면, 우리는 다음을 얻는다.
(7)
이것은 다음과 같이 간단하게 할 수 있다.
(8)
여기서 는 저 진동수 시간지연(low-frequency time delay) 이다. 인 의 함수로서의 β는 주어진다. 가 작은한, 상지연(phase delay) β는 근사적으로 와 같다. 가 1에 접근함에 따라, 상지연은 π로 증가하고 이웃의 mass들은 180°의 위상차를 가지고 진동한다. (8) 로부터 가 될 수 있는 가장 큰 값이 1이므로, 진행할 수 있는 가장 높은 진동수는 다음과 같이 주어진다.
(9)
이 진동수는 line의 cutoff frequency 라고 불린다.
cutoff frequency 보다 더 큰 진동수 ω에서 첫 번째 mass가 구동하는 것을 막는 것은 아무것도 없다. 만일 이러한 일을 한다면 무슨 일이 발생하겠는가? 만일 우리가 cutoff이상으로 line을 구동시킨다면, 우리는 지수적으로 감소하는 진폭을 가진 line에 대한 antiphase oscillation들을 얻는다.
Appendix B-7에서 우리는 그 해가 다음과 같은 형태가 됨을 본다.
(10)
이것을 (1) 에 대입함에 의하여 다음을 얻는다.
(11)
(11) 의 양쪽의 계수를 같게 놓고 풀면, 우리는 section당 감쇠에 대하여 얻는다.
(12)
가 큰 한계에서, 우리는 근사적으로 다음을 갖는다.
(13)
그 line의 낮은 진동수 동작은 그리 놀랍지는 않다. 그러나 그 mass들이 지수적으로 감쇠하는 진폭을 가진 antiphase에서 진동하는 cutoff위에서 line의 동작은 어떻게 이해해야만 하는가?
높은 진동수에서 우리는 관성에 의하여 제한된 각각 mass의 운동을 가진 매우 가벼운 spring들에 의해서 구동되는 것처럼 mass들에 대하여 생각할 수 있다.
(14)
무슨 진폭과 상을 가지고 다른 mass가 진동하는가? 만일 cutoff 보다 적절한 정도로 위이면, 우리는 ()번째와 그이상의 질량들의 효과를 무시할 수 있다. 우리는 번째 mass의 운동방정식을 다음과 같이 쓸 수 있다.
(15)
여기서 우리는 에 대하여 (14) 로부터 대체했다. 다음형태의 해를 가정해보자.
(16)
그리고 (15) 에 대입하라. 이러한 방법으로 우리는 다음을 얻는다.
(17)
여기서 우리는 분모에서 에 대하여 를 무시했다. 이것은 Eq.(13)의 그것과 같은 표현이다. 그 번째 mass는 번째 mass와 180°의 위상차를 가지고 진동하고, 이 와 비교하여 크거나, 동등하게 cutoff보다 적절하게 위인 진동수인 한, 작은 진폭을 가지고 진동한다. 우리는 번째 mass에 의해 구동된 번째 mass에 대하여 비슷하게 다룰 수 있다. 그것은 유사하게 감소되는 진폭을 가지고, 번째 mass와 180°의 위상차가 있을 것이다.
3. 실험 방법
⑴ line을 통한 phase shift를 측정하기 위하여 회로를 구성하라. 이 회로는 input과 output 신호를 더한다. 매우 낮은 진동수에서 line을 통하여 매우 작은 phase shift가 있을 것이고, output과 input신호들은 구조적으로 더할 것이다.
⑵ 구동진동수를 올림에 따라, output은 신호들이 180°의 위상차일 때까지 뒤떨어지기 시작하고 그들은 상쇄된다. line에 의한 감쇠 때문에 output신호는 input신호보다 약간 더 작고 우리는 작은 잔여신호를 관한다. 진동수가 더 증가함에 따라, 두 신호들은 다시 위상차가 줄어든다. 이러한 방법에서 우리는 curve를 구성할 수 있어야 한다. 전체 phase shift 에 대하여 이러한 종류의 curve를 구하고 sine wave의 1/4 cycle과 그것을 비교하라. 가 기대 한것보다 더 진동수의 선형함수라는 것을 발견할 수 있을 것이다.
⑶ Cutoff frequency는 무엇인가? Cutoff frequency와 실험B-6에서 측정된 delay time을 다음 관계를 통해서 비교하라.
(18)
cutoff의 근처에서 여러분을 5.6㏀보다 더 큰 저항을 가진 oscilloscope로 input signal을 더 감쇠시키는 것이 편리하다는 것을 발견할 수 있을 것이다.
⑷ 만일 delay line의 개개의 요소들이 영향 받기 쉽다면, cutoff 위에서 line의 지수적인 감쇠를 확인할 수 있다.
참고문헌
1. 박승재, 과학교육, 교육과학사, 1994
2. 성영곤, 뉴튼의 혜성연구와 만유인력, 한국과학사학회지 13권 2호, 1991
3. 유카와 히데키, 재미있는 물리 이야기, 예문당, 1990
4. 홍석인·이강영, 시간기록계가 주는 마찰력의 효과를 고려한 중력가속도의 측정, 2004
5. Gary Zukav, 김영덕 역, 춤추는 물리(The Dancing Wu Li Masters), 범양출판부, 19861989
7. Paul G.Hewitt, 알기 쉬운 물리학 강의, 청범출판사
우리는 손실이 없는 이상적인 line을 시험할 것이다. Appendix B-7에서 손실이 포함된 실제 line의 성질을 시험할 것이다. 우리는 그 line이 무한하거나, 단지 line의 한 전형적인 section만을 고려하는 것이 필요하도록 양쪽 끝에 연결된다고 가정하면 line의 한 전형적 section에 대하여는 실험 B-6의 (2)로부터 다음 식을 얻는다.
(1)
만일 우리가 사인파형태의 변위를 가지고 끝을 구동시킨다면,
(2)
우리는 번째 mass의 변위가 다음과 같이 주어지도록 line을 따라 진행되는 disturbance를 기대할 수 있다.
(3)
만일 우리가 (3) 을 (1) 에 대입하면, 우리는 다음을 얻는다.
(4)
우리는 삼각함수 공식에 의하여 (4) 의 오른쪽을 간단히 할 수 있다.
(5)
(6)
(6) 의 양쪽 변에서 계수를 같게 하면, 우리는 다음을 얻는다.
(7)
이것은 다음과 같이 간단하게 할 수 있다.
(8)
여기서 는 저 진동수 시간지연(low-frequency time delay) 이다. 인 의 함수로서의 β는 주어진다. 가 작은한, 상지연(phase delay) β는 근사적으로 와 같다. 가 1에 접근함에 따라, 상지연은 π로 증가하고 이웃의 mass들은 180°의 위상차를 가지고 진동한다. (8) 로부터 가 될 수 있는 가장 큰 값이 1이므로, 진행할 수 있는 가장 높은 진동수는 다음과 같이 주어진다.
(9)
이 진동수는 line의 cutoff frequency 라고 불린다.
cutoff frequency 보다 더 큰 진동수 ω에서 첫 번째 mass가 구동하는 것을 막는 것은 아무것도 없다. 만일 이러한 일을 한다면 무슨 일이 발생하겠는가? 만일 우리가 cutoff이상으로 line을 구동시킨다면, 우리는 지수적으로 감소하는 진폭을 가진 line에 대한 antiphase oscillation들을 얻는다.
Appendix B-7에서 우리는 그 해가 다음과 같은 형태가 됨을 본다.
(10)
이것을 (1) 에 대입함에 의하여 다음을 얻는다.
(11)
(11) 의 양쪽의 계수를 같게 놓고 풀면, 우리는 section당 감쇠에 대하여 얻는다.
(12)
가 큰 한계에서, 우리는 근사적으로 다음을 갖는다.
(13)
그 line의 낮은 진동수 동작은 그리 놀랍지는 않다. 그러나 그 mass들이 지수적으로 감쇠하는 진폭을 가진 antiphase에서 진동하는 cutoff위에서 line의 동작은 어떻게 이해해야만 하는가?
높은 진동수에서 우리는 관성에 의하여 제한된 각각 mass의 운동을 가진 매우 가벼운 spring들에 의해서 구동되는 것처럼 mass들에 대하여 생각할 수 있다.
(14)
무슨 진폭과 상을 가지고 다른 mass가 진동하는가? 만일 cutoff 보다 적절한 정도로 위이면, 우리는 ()번째와 그이상의 질량들의 효과를 무시할 수 있다. 우리는 번째 mass의 운동방정식을 다음과 같이 쓸 수 있다.
(15)
여기서 우리는 에 대하여 (14) 로부터 대체했다. 다음형태의 해를 가정해보자.
(16)
그리고 (15) 에 대입하라. 이러한 방법으로 우리는 다음을 얻는다.
(17)
여기서 우리는 분모에서 에 대하여 를 무시했다. 이것은 Eq.(13)의 그것과 같은 표현이다. 그 번째 mass는 번째 mass와 180°의 위상차를 가지고 진동하고, 이 와 비교하여 크거나, 동등하게 cutoff보다 적절하게 위인 진동수인 한, 작은 진폭을 가지고 진동한다. 우리는 번째 mass에 의해 구동된 번째 mass에 대하여 비슷하게 다룰 수 있다. 그것은 유사하게 감소되는 진폭을 가지고, 번째 mass와 180°의 위상차가 있을 것이다.
3. 실험 방법
⑴ line을 통한 phase shift를 측정하기 위하여 회로를 구성하라. 이 회로는 input과 output 신호를 더한다. 매우 낮은 진동수에서 line을 통하여 매우 작은 phase shift가 있을 것이고, output과 input신호들은 구조적으로 더할 것이다.
⑵ 구동진동수를 올림에 따라, output은 신호들이 180°의 위상차일 때까지 뒤떨어지기 시작하고 그들은 상쇄된다. line에 의한 감쇠 때문에 output신호는 input신호보다 약간 더 작고 우리는 작은 잔여신호를 관한다. 진동수가 더 증가함에 따라, 두 신호들은 다시 위상차가 줄어든다. 이러한 방법에서 우리는 curve를 구성할 수 있어야 한다. 전체 phase shift 에 대하여 이러한 종류의 curve를 구하고 sine wave의 1/4 cycle과 그것을 비교하라. 가 기대 한것보다 더 진동수의 선형함수라는 것을 발견할 수 있을 것이다.
⑶ Cutoff frequency는 무엇인가? Cutoff frequency와 실험B-6에서 측정된 delay time을 다음 관계를 통해서 비교하라.
(18)
cutoff의 근처에서 여러분을 5.6㏀보다 더 큰 저항을 가진 oscilloscope로 input signal을 더 감쇠시키는 것이 편리하다는 것을 발견할 수 있을 것이다.
⑷ 만일 delay line의 개개의 요소들이 영향 받기 쉽다면, cutoff 위에서 line의 지수적인 감쇠를 확인할 수 있다.
참고문헌
1. 박승재, 과학교육, 교육과학사, 1994
2. 성영곤, 뉴튼의 혜성연구와 만유인력, 한국과학사학회지 13권 2호, 1991
3. 유카와 히데키, 재미있는 물리 이야기, 예문당, 1990
4. 홍석인·이강영, 시간기록계가 주는 마찰력의 효과를 고려한 중력가속도의 측정, 2004
5. Gary Zukav, 김영덕 역, 춤추는 물리(The Dancing Wu Li Masters), 범양출판부, 19861989
7. Paul G.Hewitt, 알기 쉬운 물리학 강의, 청범출판사
추천자료
- 일반물리학실험) 빛의 굴절 및 편광실험 결과보고서
- 유도기전력 (코일을 통과한 자석) 레포트 - 일반물리학실험
- 줄의 진동 레포트 - 일반물리학실험
- RLC 회로 - 전압센서 레포트 - 일반물리학실험
- 액체의 밀도 측정 - Hare 장치 레포트 - 일반물리학실험
- 단순조화운동 레포트 - 일반물리학실험
- 경사면 위에서의 운동학 - Air Track 레포트 - 일반물리학실험
- 낙하운동과 중력 가속도측정 레포트 - 일반물리학실험
- 물리학실험 B-1 LAB6 : 밀리칸실험(Millikan Oil Drop Experiment)
- 줄의 진동 (일반물리학실험 북스힐 2012년 최신개정판)
- [일반물리학실험] 전반사 및 초점거리 실험 : 렌즈의 초점거리를 결정하고 렌즈에 의한 상의 ...
- 공학물리학및실험1 자유낙하 운동과 포물체 운동 실험레포트(A+)-2017
- 공학물리학및실험1 단순 조화 운동 실험 결과레포트 (A+)-2017
소개글