본문내용
빛의 반사와 굴절
실험 목표
빛의 성질인 직전성과 반사의 법칙을 이해하고 굴절 현상을 설명할 수 있다.
실험 원리
1) 빛의 직진성과 반사의 법칙
빛은 그 진행경로를 방해하는 조건이 없는 한 직진한다. 이것은 어느 두 지점에서 빛을 측정할 경우 두 지점의 최단경로인 직선(직진)을 택한다. 이것은 빛이 측정용으로 쓰이는 가장 큰 이유일 것이다. 이러한 특징은 반사와 굴절에서도 같은 양상을 보인다.
규칙적인 반사는 거울과 같은 평면에 입사될 때 일어나고, 반사 후의 빛의 방향은 입사 광선의 방향에 의하여 결정된다. 하나의 광선이 반사후의 진행하는 방향은 다음과 같은 반사의 법칙에 의해 결정된다.
“ 규칙반사가 일어날 때”
가. 입사각과 반사각은 입사면의 법선에 대하여 그 크기가 같고,
나. 반사광선과 입사광선과 법선은 같은 평면에 있다.
여기서 평면이란 입사광선과 거울의 법선으로 이루어지는 평면을 말한다. 반사의 법칙은 페르마의 원리에 의해 설명된다. 이러한 페르마의 원리는 ‘최단시간의 경로’라는 표현으로 집약된다. 최단시간의 경로란 직진성을 의미하며 반사의 경로를 추적하기에 아주 적절하게 사용된다.
2) 빛의 굴절과 전반사
빛이 굴절률(물질의 고유한 특성)이 서로 다른 두 매질의 경계면을 통과할 때 직진하지 않고 꺾
실험 목표
빛의 성질인 직전성과 반사의 법칙을 이해하고 굴절 현상을 설명할 수 있다.
실험 원리
1) 빛의 직진성과 반사의 법칙
빛은 그 진행경로를 방해하는 조건이 없는 한 직진한다. 이것은 어느 두 지점에서 빛을 측정할 경우 두 지점의 최단경로인 직선(직진)을 택한다. 이것은 빛이 측정용으로 쓰이는 가장 큰 이유일 것이다. 이러한 특징은 반사와 굴절에서도 같은 양상을 보인다.
규칙적인 반사는 거울과 같은 평면에 입사될 때 일어나고, 반사 후의 빛의 방향은 입사 광선의 방향에 의하여 결정된다. 하나의 광선이 반사후의 진행하는 방향은 다음과 같은 반사의 법칙에 의해 결정된다.
“ 규칙반사가 일어날 때”
가. 입사각과 반사각은 입사면의 법선에 대하여 그 크기가 같고,
나. 반사광선과 입사광선과 법선은 같은 평면에 있다.
여기서 평면이란 입사광선과 거울의 법선으로 이루어지는 평면을 말한다. 반사의 법칙은 페르마의 원리에 의해 설명된다. 이러한 페르마의 원리는 ‘최단시간의 경로’라는 표현으로 집약된다. 최단시간의 경로란 직진성을 의미하며 반사의 경로를 추적하기에 아주 적절하게 사용된다.
2) 빛의 굴절과 전반사
빛이 굴절률(물질의 고유한 특성)이 서로 다른 두 매질의 경계면을 통과할 때 직진하지 않고 꺾
추천자료
Etalon 내의 빛의 세기
물리실습 리포트(빛의 진행)
Michelson-Moley 간섭계( 빛의 파장 측정 )
[물리]빛의 진행실험 보고서
[사전] 광섬유를 이용한 빛의 속도 측정
[물리실험] 빛의 진행 실습레포트
물리 실험 - 빛의 성질(파동기하학) - 결과보고서
(A+, 일반물리학) 광섬유를 이용한 빛의 속도 측정 예비보고서
디자인 요소(색채,재질감,빛과운동) 종류 및 특징, 정의, 역사, 당위성, 유래, 원인, 성장배...
[실험보고서 예비 및 결과] 빛의 속도 측정 실험
[일반물리학] (결과 보고서) 빛의 성질(파동 기하학)
아베(Abbe) 굴절률 측정 결과 보고서 (굴절(Refraction), 용액의 굴절율(nDt), Abbe 굴절계의...
소개글