목차
I.Data & Results
1.나일론610 단량체 분자량
2.나일론610의 이론적 생성량
3.실험에서의 수득량
4.수득률
5.나일론 녹는점(℃) 220℃
II.Discussion
1.나일론610 단량체 분자량
2.나일론610의 이론적 생성량
3.실험에서의 수득량
4.수득률
5.나일론 녹는점(℃) 220℃
II.Discussion
본문내용
서강대학교 일반화학실험1 합성섬유 나일론 끈 메인레포트
목차
I.Data & Results
1.나일론610 단량체 분자량
2.나일론610의 이론적 생성량
3.실험에서의 수득량
4.수득률
5.나일론 녹는점(℃) 220℃
II.Discussion
I.Data & Results
1의 몰비를 사용하여 최적의 합성을 이끌어내는 것이 중요하다. 혼합 후에는 높은 온도로 가열하여 반응이 일어날 수 있도록 했다. 이때 반응 온도는 약 200도에서 250도 사이로 설정하였다. 반응이 진행되는 과정에서 발생하는 열과 가스들은 적절하게 배출되어야 하며, 이를 통제하기 위해 냉각 시스템을 사용할 수 있다. 반응이 완료된 후, 나일론이 형성된 줄기를 분리하였다. 이 단계에서 나일론은 가열과 응고 과정을 거쳐 고체 상태로 변화한다. 고체 형태의 나일론은 길고 얇은 형태를 띠며, 일반적으로 나일론 끈으로 잘라내어질 수 있다. 나일론 끈의 물리적 특성인 인장 강도와 신축성을 실험하기
목차
I.Data & Results
1.나일론610 단량체 분자량
2.나일론610의 이론적 생성량
3.실험에서의 수득량
4.수득률
5.나일론 녹는점(℃) 220℃
II.Discussion
I.Data & Results
1의 몰비를 사용하여 최적의 합성을 이끌어내는 것이 중요하다. 혼합 후에는 높은 온도로 가열하여 반응이 일어날 수 있도록 했다. 이때 반응 온도는 약 200도에서 250도 사이로 설정하였다. 반응이 진행되는 과정에서 발생하는 열과 가스들은 적절하게 배출되어야 하며, 이를 통제하기 위해 냉각 시스템을 사용할 수 있다. 반응이 완료된 후, 나일론이 형성된 줄기를 분리하였다. 이 단계에서 나일론은 가열과 응고 과정을 거쳐 고체 상태로 변화한다. 고체 형태의 나일론은 길고 얇은 형태를 띠며, 일반적으로 나일론 끈으로 잘라내어질 수 있다. 나일론 끈의 물리적 특성인 인장 강도와 신축성을 실험하기
소개글